Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.

Identifieur interne : 000670 ( Main/Exploration ); précédent : 000669; suivant : 000671

A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.

Auteurs : Chao-Wei Hung [États-Unis] ; Jorge Y. Martínez-Márquez [États-Unis] ; Fatima T. Javed [États-Unis] ; Mara C. Duncan [États-Unis]

Source :

RBID : pubmed:30093662

Descripteurs français

English descriptors

Abstract

Chemical sensitivity, growth inhibition in response to a chemical, is a powerful phenotype that can reveal insight into diverse cellular processes. Chemical sensitivity assays are used in nearly every model system, however the yeast Saccharomyces cerevisiae provides a particularly powerful platform for discovery and mechanistic insight from chemical sensitivity assays. Here we describe a simple and inexpensive approach to determine chemical sensitivity quantitatively in yeast in the form of half maximal inhibitory concentration (IC50) using common laboratory equipment. We demonstrate the utility of this method using chemicals commonly used to monitor changes in membrane traffic. When compared to traditional agar-based plating methods, this method is more sensitive and can detect defects not apparent using other protocols. Additionally, this method reduces the experimental protocol from five days to 18 hours for the toxic amino acid canavanine. Furthermore, this method provides reliable results using lower amounts of chemicals. Finally, this method is easily adapted to additional chemicals as demonstrated with an engineered system that activates the spindle assembly checkpoint in response to rapamycin with differing efficiencies. This approach provides researchers with a cost-effective method to perform chemical genetic profiling without specialized equipment.

DOI: 10.1038/s41598-018-30305-z
PubMed: 30093662
PubMed Central: PMC6085351


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Hung, Chao Wei" sort="Hung, Chao Wei" uniqKey="Hung C" first="Chao-Wei" last="Hung">Chao-Wei Hung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, University of California, San Diego, California, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of California, San Diego, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez Marquez, Jorge Y" sort="Martinez Marquez, Jorge Y" uniqKey="Martinez Marquez J" first="Jorge Y" last="Martínez-Márquez">Jorge Y. Martínez-Márquez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Javed, Fatima T" sort="Javed, Fatima T" uniqKey="Javed F" first="Fatima T" last="Javed">Fatima T. Javed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30093662</idno>
<idno type="pmid">30093662</idno>
<idno type="doi">10.1038/s41598-018-30305-z</idno>
<idno type="pmc">PMC6085351</idno>
<idno type="wicri:Area/Main/Corpus">000483</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000483</idno>
<idno type="wicri:Area/Main/Curation">000483</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000483</idno>
<idno type="wicri:Area/Main/Exploration">000483</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Hung, Chao Wei" sort="Hung, Chao Wei" uniqKey="Hung C" first="Chao-Wei" last="Hung">Chao-Wei Hung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, University of California, San Diego, California, USA. c7hung@ucsd.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of California, San Diego, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez Marquez, Jorge Y" sort="Martinez Marquez, Jorge Y" uniqKey="Martinez Marquez J" first="Jorge Y" last="Martínez-Márquez">Jorge Y. Martínez-Márquez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Javed, Fatima T" sort="Javed, Fatima T" uniqKey="Javed F" first="Fatima T" last="Javed">Fatima T. Javed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzenesulfonates (pharmacology)</term>
<term>Biological Assay (economics)</term>
<term>Biological Assay (methods)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cost-Benefit Analysis (MeSH)</term>
<term>Endosomes (drug effects)</term>
<term>Endosomes (metabolism)</term>
<term>Inhibitory Concentration 50 (MeSH)</term>
<term>Protein Transport (drug effects)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>trans-Golgi Network (drug effects)</term>
<term>trans-Golgi Network (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse coût-bénéfice (MeSH)</term>
<term>Benzènesulfonates (pharmacologie)</term>
<term>Concentration inhibitrice 50 (MeSH)</term>
<term>Dosage biologique (méthodes)</term>
<term>Dosage biologique (économie)</term>
<term>Endosomes (effets des médicaments et des substances chimiques)</term>
<term>Endosomes (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Réseau trans-golgien (effets des médicaments et des substances chimiques)</term>
<term>Réseau trans-golgien (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Benzenesulfonates</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endosomes</term>
<term>Protein Transport</term>
<term>Saccharomyces cerevisiae</term>
<term>trans-Golgi Network</term>
</keywords>
<keywords scheme="MESH" qualifier="economics" xml:lang="en">
<term>Biological Assay</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Endosomes</term>
<term>Réseau trans-golgien</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Endosomes</term>
<term>Saccharomyces cerevisiae</term>
<term>trans-Golgi Network</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biological Assay</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endosomes</term>
<term>Membrane cellulaire</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Réseau trans-golgien</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Dosage biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Benzènesulfonates</term>
</keywords>
<keywords scheme="MESH" qualifier="économie" xml:lang="fr">
<term>Dosage biologique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cost-Benefit Analysis</term>
<term>Inhibitory Concentration 50</term>
<term>Reproducibility of Results</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse coût-bénéfice</term>
<term>Concentration inhibitrice 50</term>
<term>Facteurs temps</term>
<term>Reproductibilité des résultats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical sensitivity, growth inhibition in response to a chemical, is a powerful phenotype that can reveal insight into diverse cellular processes. Chemical sensitivity assays are used in nearly every model system, however the yeast Saccharomyces cerevisiae provides a particularly powerful platform for discovery and mechanistic insight from chemical sensitivity assays. Here we describe a simple and inexpensive approach to determine chemical sensitivity quantitatively in yeast in the form of half maximal inhibitory concentration (IC
<sub>50</sub>
) using common laboratory equipment. We demonstrate the utility of this method using chemicals commonly used to monitor changes in membrane traffic. When compared to traditional agar-based plating methods, this method is more sensitive and can detect defects not apparent using other protocols. Additionally, this method reduces the experimental protocol from five days to 18 hours for the toxic amino acid canavanine. Furthermore, this method provides reliable results using lower amounts of chemicals. Finally, this method is easily adapted to additional chemicals as demonstrated with an engineered system that activates the spindle assembly checkpoint in response to rapamycin with differing efficiencies. This approach provides researchers with a cost-effective method to perform chemical genetic profiling without specialized equipment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30093662</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>11919</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-30305-z</ELocationID>
<Abstract>
<AbstractText>Chemical sensitivity, growth inhibition in response to a chemical, is a powerful phenotype that can reveal insight into diverse cellular processes. Chemical sensitivity assays are used in nearly every model system, however the yeast Saccharomyces cerevisiae provides a particularly powerful platform for discovery and mechanistic insight from chemical sensitivity assays. Here we describe a simple and inexpensive approach to determine chemical sensitivity quantitatively in yeast in the form of half maximal inhibitory concentration (IC
<sub>50</sub>
) using common laboratory equipment. We demonstrate the utility of this method using chemicals commonly used to monitor changes in membrane traffic. When compared to traditional agar-based plating methods, this method is more sensitive and can detect defects not apparent using other protocols. Additionally, this method reduces the experimental protocol from five days to 18 hours for the toxic amino acid canavanine. Furthermore, this method provides reliable results using lower amounts of chemicals. Finally, this method is easily adapted to additional chemicals as demonstrated with an engineered system that activates the spindle assembly checkpoint in response to rapamycin with differing efficiencies. This approach provides researchers with a cost-effective method to perform chemical genetic profiling without specialized equipment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hung</LastName>
<ForeName>Chao-Wei</ForeName>
<Initials>CW</Initials>
<Identifier Source="ORCID">0000-0003-2365-9716</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA. c7hung@ucsd.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA. c7hung@ucsd.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of California, San Diego, California, USA. c7hung@ucsd.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martínez-Márquez</LastName>
<ForeName>Jorge Y</ForeName>
<Initials>JY</Initials>
<Identifier Source="ORCID">0000-0003-1485-4800</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Javed</LastName>
<ForeName>Fatima T</ForeName>
<Initials>FT</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duncan</LastName>
<ForeName>Mara C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F31 GM112470</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM092741</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001557">Benzenesulfonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7S9P0Y4313</RegistryNumber>
<NameOfSubstance UI="C007061">C.I. Fluorescent Brightening Agent 28</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001557" MajorTopicYN="N">Benzenesulfonates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001681" MajorTopicYN="N">Biological Assay</DescriptorName>
<QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003362" MajorTopicYN="N">Cost-Benefit Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020128" MajorTopicYN="N">Inhibitory Concentration 50</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021601" MajorTopicYN="N">trans-Golgi Network</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30093662</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-30305-z</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-30305-z</ArticleId>
<ArticleId IdType="pmc">PMC6085351</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2009 Apr;27(4):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19349972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2010 Jun 9;110(6):3315-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20353181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 1999 Sep 10;155(1-2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Aug 11;126(3):611-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16901791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2015 Jul;17(7):868-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26053220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2007 Nov;43(5):667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18072596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Jul 16;586(15):2097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22584056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Jul;20(14):3401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3552-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1978 Oct;14(4):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">568910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15724-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2005 Jun;2(6):415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Aug;185(4):1221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2016 Jun;17(6):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26939796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Apr 1;27(7):1143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1998 Aug;36(8):2383-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Dec 28;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26709839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Jan 15;20(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12489126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Dec;30(12):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 11;344(6180):208-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 Jan;25(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25220181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Apr;19(4):1282-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Mar 18;11:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20298554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Apr;170(4):1950-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3280554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 May;18(5):1803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):1922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2014 Feb-Mar;169(2-3):107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):16736-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2583-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(14):4482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 30;10(3):e0119807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25822370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Sep 26;31(6):925-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1983 May;129(5):1577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6352860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2011 Jan;Chapter 13:Unit13.10B</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21225637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Apr 1;327(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15033507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Sep 25;135(38):14276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23957439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Jun 15;211(2):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7794249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Nov;5(11):1831-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jan;22(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Apr;179(7):2154-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9079899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Feb 1;27(3):588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Mar;2(3):283-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11879634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Feb 16;18(2):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Nov;22(21):4093-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Oct;19(10):1836-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Aug;1(2):e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16121259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jul 22;291(30):15727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27235400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1996 Sep;2(9):1028-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8782462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Jun;9(6):1565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Caroline du Nord</li>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Hung, Chao Wei" sort="Hung, Chao Wei" uniqKey="Hung C" first="Chao-Wei" last="Hung">Chao-Wei Hung</name>
</region>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
<name sortKey="Hung, Chao Wei" sort="Hung, Chao Wei" uniqKey="Hung C" first="Chao-Wei" last="Hung">Chao-Wei Hung</name>
<name sortKey="Hung, Chao Wei" sort="Hung, Chao Wei" uniqKey="Hung C" first="Chao-Wei" last="Hung">Chao-Wei Hung</name>
<name sortKey="Javed, Fatima T" sort="Javed, Fatima T" uniqKey="Javed F" first="Fatima T" last="Javed">Fatima T. Javed</name>
<name sortKey="Martinez Marquez, Jorge Y" sort="Martinez Marquez, Jorge Y" uniqKey="Martinez Marquez J" first="Jorge Y" last="Martínez-Márquez">Jorge Y. Martínez-Márquez</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000670 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000670 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30093662
   |texte=   A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30093662" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020